Direct Arrhythmia Classification from Compressive ECG Signals in Wearable Health Monitoring System
2017
Due to the capacity of processing signal with low energy consumption, compressive sensing (CS) has been widely used in wearable health monitoring system for arrhythmia classification of electrocardiogram (ECG) signals. However, most existing works focus on compressive sensing reconstruction, in other words, the ECG signals must be reconstructed before use. Hence, these methods have high computational complexity. In this paper, the authors propose a cardiac arrhythmia classification scheme that performs classification task directly in the compressed domain, skipping the reconstruction stage. The proposed scheme first employs the Pan–Tompkins algorithm to preprocess the ECG signals, including denoising and QRS detection, and then compresses the ECG signals by CS to obtain the compressive measurements. The features are extracted directly from these measurements based on principal component analysis (PCA), and are used to classify the ECG signals into different types by the proposed semi-supervised learning a...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
11
References
15
Citations
NaN
KQI