Ferulic acid through mitigation of NMDA receptor pathway exerts anxiolytic-like effect in mouse model of maternal separation stress.

2020 
: Background Experiencing early-life stress plays an important role in the pathophysiology of anxiety disorders. Ferulic acid is a phenolic compound found in some plants which has several pharmacological properties. N-methyl-D-aspartate (NMDA) receptors are involved in the pathophysiology of mood disorders. In this study we aimed to assess the anxiolytic-like effect of ferulic acid in a mouse model of maternal separation (MS) stress by focusing on the possible involvement of NMDA receptors. Methods Mice were treated with ferulic acid (5 and 40 mg/kg) alone and in combination with NMDA receptor agonist/antagonist. Valid behavioral tests were performed, including open field test (OFT) and elevated plus maze test (EPM), while quantitative real time polymerase chain reaction (qRT-PCR) was used to evaluate gene expression of NMDA subunits (GluN2A and GluN2B) in the hippocampus. Results Findings showed that treatment of MS mice with ferulic acid increased the time spent in the central zone of the OFT and increased both open arm time and the percent of open arm entries in the EPM. Ferulic acid reduced the expression of NMDA receptor subunit genes. We showed that administration of NMDA receptor agonist (NMDA) and antagonist (ketamine) exerted anxiogenic and anxiolytic-like effects, correspondingly. Results showed that co-administration of a sub-effective dose of ferulic acid plus ketamine potentiated the anxiolytic-like effect of ferulic acid. Furthermore, co-administration of an effective dose of ferulic acid plus NMDA receptor agonist (NMDA) attenuated the anxiolytic-like effect of ferulic acid. Conclusions In deduction, our findings showed that NMDA, partially at least, is involved in the anxiolytic-like effect of ferulic acid in the OFT and EPM tests.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    6
    Citations
    NaN
    KQI
    []