Influence of gamma-ray irradiation and post-annealing studies on pentacene films: the anisotropic effects on structural and electronic properties

2020 
In this work, γ-ray irradiation effects on pentacene thin films are investigated in terms of the change in the crystallinity, and electronic structure as well as chemical states of the film. The pentacene films are γ-irradiated up to 3 kGy and then characterized using synchrotron X-ray diffraction, near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy. We found that γ-ray irradiation creates defects, resulting in a decrease of X-ray diffraction intensity both in the plane normal and in-plane directions. From angle dependent NEXAFS; the transition of C 1s to π* orbital for irradiated samples increases; suggesting that the unoccupied π* states enhance due to defects or radical formation in pentacene thin films. Additionally, the in-plane resistivity shows a decreasing trend of resistance after irradiation. This trend of increase in conductivity is also consistent with C 1s to π transition, which manifests the increase in carrier concentration. Hall effect measurements further confirmed the increase in carrier concentration as a function of dose; however, the mobility of the sample decreases as the dose rate increases due to the defects created. By post-irradiation annealing, the thin film phase diffraction intensity can be recovered. Altogether, the anisotropic studies on pentacene films disclosed that the irradiation leads to defect formation along in-plane and plane normal directions. Overall, these results suggest that pentacene is one of the robust organic electronic materials; whose structure remains mostly intact even after irradiation up to a dose of 3 kGy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    4
    Citations
    NaN
    KQI
    []