A Comprehensive Evaluation Model of Regional Water Resource Carrying Capacity: Model Development and a Case Study in Baoding, China

2020 
Scientific water resource carrying capacity (WRCC) evaluations are necessary for providing guidance for the sustainable utilization of water resources. Based on the driving-pressure-state-impact-response feedback loop, this paper selects 21 indicators under five dimensions to construct a regional WRCC comprehensive evaluation framework. The projection pursuit clustering (PPC) method is implemented with the matter-element extension (MEE) model to overcome the limitations of subjective deviation and indicator attribute incompatibility in traditional comprehensive assessment methods affecting the accuracy of evaluations. The application of the integrated evaluation model is demonstrated in Baoding city in the Jing-Jin-Ji area from 2010 to 2017. The results indicate that the economic water consumption intensity is the most influential factor that impacts the WRCC change in Baoding, and the pressure subsystem and response subsystem are dominant in the entire system. The WRCC in Baoding significantly improved between 2010 and 2017 from a grade V extremely unsafe state to a grade III critical state. Natural water shortages and large population scales are the main negative factors during this period; however, the existing measures are still insufficient to achieve an optimal WRCC status. Considering the future population and industry inflow, additional actions must be proposed to maintain and promote harmonious conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    5
    Citations
    NaN
    KQI
    []