pH-Switchability and Second-Order Nonlinear Optical Properties of Monocyclopentadienylruthenium(II)/iron(II) Tetrazoles/Tetrazolates: Synthesis, Characterization, and Time-Dependent Density Functional Theory Calculations

2017 
Tetrazole/tetrazolate monocyclopentadienyliron(II) and ruthenium(II) compounds of general formulas [(η5-C5H5)M(dppe)(N4(H)CC6H4NO2)][PF6]/[(η5-C5H5)M(dppe)(N4CC6H4NO2)] were investigated for their pH-switching second-order nonlinear optical (SONLO) properties. Compounds [(η5-C5H5)M(dppe)(N4CC6H4NO2)] (M = Fe, Ru) and compound [(η5-C5H5)Ru(dppe)(N4(H)CC6H4NO2)][PF6] were fully characterized by (1H-, 13C-, 31P-) NMR, cyclic voltammetry, and elemental analysis, and compounds [(η5-C5H5)Fe(dppe)(N4CC6H4NO2)] and [(η5-C5H5)Ru(dppe)(N4(H)CC6H4NO2)][PF6] were further characterized by single-crystal X-ray diffraction; the synthesis of [(η5-C5H5)Fe(dppe)(N4(H)CC6H4NO2)][PF6] was unsuccessful. Time-dependent density functional theory calculations were performed using PBE0 and CAM-B3LYP functionals to evaluate the first hyperpolarizability (βtot) of the tetrazole/tetrazolate complexes and for a detailed analysis of the experimental data. Both functionals predict (i) high first hyperpolarizabilities for the tetrazolat...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    85
    References
    9
    Citations
    NaN
    KQI
    []