MOLECULAR DYNAMICS SIMULATIONS OF LIQUID CRYSTAL MOLECULES ON A POLYIMIDE MONOLAYER

1996 
Abstract Preliminary results are presented on the molecular dynamics simulations of alignment of the liquid crystal molecule, 4-n-octyl-4′-cyanobiphenyl (8CB), on a polyimide (pyromelltic dianhydride-p-phenylene diamine) oligomer monolayer. We actually simulated a three-layer system, i.e., liquid crystal molecule/polyimide oligomer/a basal plane of graphite. First, simulations of the oligomers adsorbed on graphite were done in order to obtain reasonable adsorption structures, as the pre-stage simulation of the three-layer system. Then, by placing a liquid crystal layer on top, the three-layer system was simulated. The stable liquid crystal alignment direction on the polyimide monolayer was found roughly to be the polyimide chain direction with zero pretilt in this combination of liquid crystal and polymer materials. The calculated adsorption energy of an 8CB molecule to the polyimide monolayer was 128 kJ mol−1 and the carbonyl group of the polyimide was the main adsorption site.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    21
    Citations
    NaN
    KQI
    []