Severe radiation necrosis refractory to surgical resection in patients with melanoma and brain metastases managed with ipilimumab/nivolumab and brain-directed stereotactic radiation therapy.

2020 
Abstract Background The use of targeted therapies and immune checkpoint inhibitors has drastically changed the management of patients with melanoma and brain metastases. Specifically, combination therapy with ipilimumab, a cytotoxic T-lymphocyte antigen 4 (CTLA-4) inhibitor, and nivolumab, a programmed cell death protein 1 (PD-1) inhibitor, has become a preferred systemic therapy option for patients with melanoma and asymptomatic brain metastases. However, the efficacy and toxicity profile of these agents in combination with brain-directed radiation therapy is not well-described. Case Description In this case series, we highlight a series of patients with melanoma demonstrating severe radiation necrosis immediately refractory to surgical resection following brain-directed stereotactic radiation therapy with concurrent ipilimumab and nivolumab. Three patients described in this series each received stereotactic radiation therapy to a dose of 30 Gy in 5 fractions to a melanoma brain metastasis. These areas developed radiographic evidence of necrosis, which was managed surgically and progressed immediately and rapidly after resection. Re-resection, bevacizumab, steroids, and/or discontinuation of nivolumab was used to mitigate further necrosis with varying efficacy. Conclusion Patients with metastatic melanoma receiving brain-directed radiation therapy with concurrent ipilimumab and nivolumab are at risk for developing severe, surgically refractory radiation necrosis and should be closely followed clinically and with imaging. The exact mechanism for such severe necrosis is unknown, and future studies are needed to better understand this pathophysiology and identify optimal treatment strategies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    2
    Citations
    NaN
    KQI
    []