Molecular modeling of the human P2Y2 receptor and design of a selective agonist, 2'-amino-2'-deoxy-2-thiouridine 5'-triphosphate.

2007 
A rhodopsin-based homology model of the nucleotide-activated human P2Y2 receptor, including loops, termini, and phospholipids, was optimized with the Monte Carlo multiple minimum conformational search routine. Docked uridine 5‘-triphosphate (UTP) formed a nucleobase π−π complex with conserved Phe3.32. Selectivity-enhancing 2‘-amino-2‘-deoxy substitution interacted through π-hydrogen-bonding with aromatic Phe6.51 and Tyr3.33. A “sequential ligand composition” approach for docking the flexible dinucleotide agonist Up4U demonstrated a shift of conserved cationic Arg3.29 from the UTP γ position to the δ position of Up4U and Up4 ribose. Synthesized nucleotides were tested as agonists at human P2Y receptors expressed in 1321N1 astrocytoma cells. 2‘-Amino and 2-thio modifications were synergized to enhance potency and selectivity; compound 8 (EC50 = 8 nM) was 300-fold P2Y2-selective versus P2Y4. 2‘-Amine acetylation reduced potency, and trifluoroacetylation produced intermediate potency. 5-Amino nucleobase subst...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    42
    Citations
    NaN
    KQI
    []