Photocatalytic behavior of Ba(Sb/Ta)2O6 perovskite for reduction of organic pollutants: Experimental and DFT correlation

2021 
Abstract We have synthesized closely packed hexagonal 2D plates and clustered nanoparticle morphologies of Ba(Sb/Ta)2O6 (BSTO) perovskite via the polymerizable complex method for photocatalytic dye degradation activities. The BSTO crystallized in a hexagonal structure. The presence of Ba2+, Sb5+, Ta5+, and O2− chemical states identified from XPS confirmed the formation of mixed Ba(Sb/Ta)2O6 phase accompanied with a minor amount of TaOx. Furthermore, BSTO showed excellent photocatalytic activity for the degradation of various organic dyes. The kinetic studies revealed 65.9%, 77.3%, 89.8%, and 84.2%, of Crystal Violet (CV), Methylene Blue (MB), Rhodamine blue (RhB), and Methylene Orange (MO), respectively, after irradiation of 180 min without using a cocatalyst. The formation of O 2 − and OH−surface radicals, which are believed to facilitate the degradation of the dyes, are unveiled through first-principles Density Functional Theory (DFT) calculations and scavenging studies. Our results suggest that BSTO holds promise as an excellent photocatalyst with better degradation efficiency for various organic dyes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    2
    Citations
    NaN
    KQI
    []