Influence of cell interactions in a novel model of postnatal mucosal regeneration.

1996 
BACKGROUND AND AIMS--Conventional models of postnatal mucosal regeneration are cumbersome and limited: a novel model is described here. In addition, the influence of cell interactions on mucosal regeneration is examined within the model. METHODS--Postnatal rat small intestinal mucosa was digested by enzymes to yield heterotypic cell aggregates (CA). CA colony forming ability, growth, and limited cytodifferentiation were assessed in vitro. CA were transplanted subcutaneously and retrieved for histological examination at staggered intervals to assess neomucosal morphogenesis and cytodifferentiation in vivo. Cell interactions in CA were disrupted by enzymes, thus producing cell suspensions (CS). Regeneration by CA and CS were compared. RESULTS--CA produced proliferative colonies in vitro and showed a temporal sequence of neomucosal morphogenesis and differentiation in vivo. CA colonies were more numerous within 24 hours of primary culture and had greater cellularity by 96 hours than CS colonies. Alkaline phosphatase was expressed only by 258 of 696 CA colonies (37%). CA subcutaneous grafts (48 of 56 (87%)) regenerated small intestinal neomucosa while CS were unsuccessful. CONCLUSION--These methods provide a model of mucosal regeneration which includes constituent processes of colony formation, growth, neomucosal morphogenesis, and cytodifferentiation. Preservation of cell interactions within CA seems advantageous to regeneration within the model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    18
    Citations
    NaN
    KQI
    []