DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines
2019
High-throughput screening technologies have provided a large amount of drug sensitivity data for a panel of cancer cell lines and hundreds of compounds. Computational approaches to analyzing these data can benefit anticancer therapeutics by identifying molecular genomic determinants of drug sensitivity and developing new anticancer drugs. In this study, we have developed a deep learning architecture to improve the performance of drug sensitivity prediction based on these data. We integrated both genomic features of cell lines and chemical information of compounds to predict the half maximal inhibitory concentrations (IC50) on the Cancer Cell Line Encyclopedia (CCLE) and the Genomics of Drug Sensitivity in Cancer (GDSC) datasets using a deep neural network, which we called DeepDSC. Specifically, we first applied a stacked deep autoencoder to extract genomic features of cell lines from gene expression data, and then combined the compounds' chemical features to these genomic features to produce final response data. We conducted 10-fold cross-validation to demonstrate the performance of our deep model in terms of root-mean-square error (RMSE) and coefficient of determination R2 . We show that our model outperforms the previous approaches with RMSE of 0.23 and R2 of 0.78 on CCLE dataset, and RMSE of 0.52 and R2 of 0.78 on GDSC dataset, respectively. Moreover, to demonstrate the prediction ability of our models on novel cell lines or novel compounds, we left cell lines originating from the same tissue and each compound out as the test sets, respectively, and the rest as training sets. The performance was comparable to other methods.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
49
References
25
Citations
NaN
KQI