Influence of HbCO Structure of the Bar-Headed Goose on Photolysis Thermodynamics as Studied by the Nanosecond Laser-Ultrasonic Technique

2013 
The bar-headed goose, a specialized high-altitude species, has a capacity for high oxygen uptake from a hypoxic environment. It thus has a higher oxygen affinity than other bird species of lower-altitude environments. Oxygen affinity is determined by molecular structures and genetic mutations of hemoglobin (Hb), which can also influence the coordinating structures and dynamics of oxygen-Hb. To explore the structural differences in Hbs as between high and low altitude species, photolysis dynamic parameters, including quantum yield, enthalpy, and conformational volume changes in carboxy-Hbs (HbCO) for the bar-headed goose and low altitude counterparts (the Chinese goose and chicken) were investigated by the laser pumping-probing technique and photoacoustic calorimetry. Comparing the photolysis results for HbCO of the three species, the enthalpy and conformational volume changes of the bar-headed goose were much smaller than those of the others, although the quantum yields of all three species are similar. T...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []