Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly

2018 
X-linked Dystonia-Parkinsonism (XDP) is a Mendelian neurodegenerative disease endemic to the Philippines. We integrated genome and transcriptome assembly with induced pluripotent stem cell-based modeling to identify the XDP causal locus and potential pathogenic mechanism. Genome sequencing identified novel variation that was shared by all probands and three recombination events that narrowed the causal locus to a genomic segment including TAF1. Transcriptome assembly in neural derivative cells discovered novel TAF1 transcripts, including a truncated transcript exclusively observed in probands that involved aberrant splicing and intron retention (IR) associated with a SINE-VNTR-Alu (SVA)-type retrotransposon insertion. This IR correlated with decreased expression of the predominant TAF1 transcript and altered expression of neurodevelopmental genes; both the IR and aberrant TAF1 expression patterns were rescued by CRISPR/Cas9 excision of the SVA. These data suggest a unique genomic cause of XDP and may provide a roadmap for integrative genomic studies in other unsolved Mendelian disorders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []