Transport Monte Carlo: High-Accuracy Posterior Approximation via Random Transport

2021 
In Bayesian applications, there is a huge interest in rapid and accurate estimation of the posterior distribution, particularly for high dimensional or hierarchical models. In this article, we propose to use optimization to solve for a joint distribution (random transport plan) between two random variables, $\theta$ from the posterior distribution and $\beta$ from the simple multivariate uniform. Specifically, we obtain an approximate estimate of the conditional distribution $\Pi(\beta\mid \theta)$ as an infinite mixture of simple location-scale changes; applying the Bayes' theorem, $\Pi(\theta\mid\beta)$ can be sampled as one of the reversed transforms from the uniform, with the weight proportional to the posterior density/mass function. This produces independent random samples with high approximation accuracy, as well as nice theoretic guarantees. Our method shows compelling advantages in performance and accuracy, compared to the state-of-the-art Markov chain Monte Carlo and approximations such as variational Bayes and normalizing flow. We illustrate this approach via several challenging applications, such as sampling from multi-modal distribution, estimating sparse signals in high dimension, and soft-thresholding of a graph with a prior on the degrees.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    0
    Citations
    NaN
    KQI
    []