Finite Time Fault-Tolerant Control of Spacecraft Rendezvous and Docking Based on Linear Sliding Mode

2021 
To address the issue of actuator failure that may occur in the process of rigid spacecraft docking, a linear sliding mode surface is selected, the corresponding attitude and orbit controllers are designed, and the asymptotically stable fault-tolerant control of attitude and orbit is realized. In the fault-tolerant controller, the health matrix is used to describe the failure of the actuator, and the corresponding substitution value is designed based on the characteristics of partial failure to realize the fault-tolerant treatment of the actuator fault. By using the indirect control method, the nonlinear parts, time-varying terms and the influence of external disturbances of the spacecraft control system under different external conditions are ignored, which improves the stability performance of the spacecraft system. Meanwhile, asymptotic stability of the system conforms to the requirements of spacecraft rendezvous and docking control time. Finally, the effectiveness and stability of the designed control system are verified by simulation experiments and the simulation results are analyzed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []