Quasicontinuum simulations of geometric effect on onset plasticity of nano-scale patterned lines

2017 
Onset plasticity of metallic nano-lines or nano-beams is of considerable scientific and technological interest in micro-/nano- mechanics and interconnects of patterned lines in electronic devices, where capability of resistance to deformation is important. In this study, a multiscale quasicontinuum (QC) method was used to explore such an issue in a nano-scale copper (Cu) line protruding from a relatively large single crystal Cu substrate during compression. The results show that the yield stress of a rectangular beam on the substrate can be greatly reduced compared with that of a flat surface of the same area. For the rectangular line, the aspect ratio (width/height) affects dislocation morphology at the onset plasticity without much change of yield stress. However, for the trapezoidal line, the yield stress decreases with the base angle (α), especially when the α is over 54.7°. As the sidewall orientation changes from 〈100〉 at α = 0°, then to 〈111〉 at α = 54.7° and finally to 〈110〉 at α = 90°, a higher surface energy could enable easier dislocation formation and lower yield stress. Meanwhile, it is found that the interaction between the line and the support substrate also shows a great effect on yield stress. Moreover, although it is possible to open two extra dislocation slip planes inside from the two bottom corners of the Cu line with the α over 54.7°, dislocation nucleation derived from them is only observed at α = 90°.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    4
    Citations
    NaN
    KQI
    []