miR-21 Is Overexpressed in Hydatidiform Mole Tissues and Promotes Proliferation, Migration, and Invasion in Choriocarcinoma Cells

2017 
Objective The aims of this study were to make clear whether miR-21 was dysregulated in hydatidiform mole (HM) tissues and choriocarcinoma (CCA) cells, to elucidate whether aberrant miR-21 expression would affect the function of CCA cells, and to find out whether there was a relationship between miR-21 and AKT , PDCD4 , and PTEN in CCA cells. Methods Fresh and formalin-fixed, paraffin-embedded trophoblastic tissues (normal first trimester placentas and HMs) were retrieved from the biobank in the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University. Choriocarcinoma JAR and JEG-3 cells were cultured. Expression of miR-21 in trophoblast cells and tissues was examined by quantitative real-time polymerase chain reaction. Location and distribution of miR-21 in trophoblast tissues were determinated by in situ hybridization and fluorescent in situ hybridization. The effect of miR-21 on JAR and JEG-3 cells was tested by miR-21 mimics and inhibitor transfection, followed by cell viability assay, flow cytometric analysis, and Transwell analysis. Interaction between miR-21 and its target genes in CCA cells was verified by quantitative real-time polymerase chain reaction, Western blot, and luciferase report system. Results We originally found miR-21 was markedly upregulated in HM tissues compared with normal first trimester placentas. The expression of miR-21 was exclusively confined in trophoblastic layers. Furthermore, we discovered miR-21 was significantly increased in JAR and JEG-3 cells compared with normal primary human trophoblastic cells. Moreover, we demonstrated miR-21 could promote proliferation, migration, and invasion of CCA cells. We furthermore proved miR-21 negatively regulated PDCD4 and PTEN in CCA cells and targeted to PDCD4 3′UTR directly. In addition, we confirmed that miR-21 could activate Akt pathway by phosphorylating Akt at Ser 473. Conclusions Our results suggested miR-21 was responsible for aggressive phenotype of gestational trophoblastic disease and had the potential diagnostic and therapeutic values for gestational trophoblastic neoplasm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    9
    Citations
    NaN
    KQI
    []