Redundancy Scheduling with Locally Stable Compatibility Graphs.

2020 
Redundancy scheduling is a popular concept to improve performance in parallel-server systems. In the baseline scenario any job can be handled equally well by any server, and is replicated to a fixed number of servers selected uniformly at random. Quite often however, there may be heterogeneity in job characteristics or server capabilities, and jobs can only be replicated to specific servers because of affinity relations or compatibility constraints. In order to capture such situations, we consider a scenario where jobs of various types are replicated to different subsets of servers as prescribed by a general compatibility graph. We exploit a product-form stationary distribution and weak local stability conditions to establish a state space collapse in heavy traffic. In this limiting regime, the parallel-server system with graph-based redundancy scheduling operates as a multi-class single-server system, achieving full resource pooling and exhibiting strong insensitivity to the underlying compatibility constraints.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    9
    Citations
    NaN
    KQI
    []