Facile synthesis of iron oxide supported on porous nitrogen doped carbon for catalytic oxidation.

2021 
Iron oxide (FexOy) supported on porous nitrogen doped carbon is synthesized by a facile pyrolysis method. SiO2 and NaNO3 are used as the template and activation agent respectively for porous structure generation and large specific surface area (SSA) creation. The obtained materials show superior catalytic oxidation ability and can activate peroxymonosulfate (PMS) in a wide pH range (3-9) to degrade organic pollutants. The degradation process is a two-stage reaction, including a rapid initial decay and a following slow reaction stage. According to the free radical quenching experiments, electron paramagnetic resonance (EPR) spectroscopy analysis, and electrochemical tests, the superoxide radical (O2-) and singlet oxygen (1O2) are proved to play crucial roles in organics degradation. The high SSA (773 m2 g-1), abundant of structural defects, and synergistic effect between FexOy and the nitrogen doped carbon are the key factors for the enhanced activity. The catalysts in this study can be synthesized easily and contain no toxic metals, thus should have great potential in the wastewater remediation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    1
    Citations
    NaN
    KQI
    []