Deterministic conversion rule for CNNs to efficient spiking convolutional neural networks

2020 
This paper proposes a general conversion theory to reveal the relations between convolutional neural network (CNN) and spiking convolutional neural network (spiking CNN) from structure to information processing. Based on the conversion theory and the statistical features of the activations distribution in CNN, we establish a deterministic conversion rule to convert CNNs into spiking CNNs with definite conversion procedure and the optimal setting of all parameters. Included in conversion rule, we propose a novel “n-scaling” weight mapping method to realize high-accuracy, low-latency and power efficient object classification on hardware. For the first time, the minimum dynamic range of spiking neurons membrane potential is studied to help to balance the trade-off between representation range and precise of the data type adopted by dedicated hardware when spiking CNNs run on it. The simulation results demonstrate that the converted spiking CNNs perform well on MNIST, SVHN and CIFAR-10 datasets. The accuracy loss over three datasets is no more than 0.4%. 39% of processing time is shortened at best, and less power consumption is benefited from lower latency achieved by our conversion rule. Furthermore, the results of noise robustness experiments indicate that spiking CNN inherits the robustness from its corresponding CNN.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    10
    Citations
    NaN
    KQI
    []