Theoretical prediction of the PtOX (X = S and Se) monolayers as promising optoelectronic and thermoelectric 2D materials

2021 
Abstract In this paper, two new monolayers, namely PtOS and PtOSe, are theoretically predicted using first-principles calculations. Structural, electronic, optical and thermoelectric properties are explored using full-potential linearized augmented plane-wave (FP-LAPW) method and the semiclassical Boltzmann transport theory. Predicted two-dimensional (2D) materials show good dynamical, thermodynamic and structural stability. Calculated electronic structures indicate the indirect gap semiconductor nature of the PtOS and PtOSe single layers with energy gap of 1.346(2.436) and 0.978(1.978) eV as calculated with the WC(HSE06) functional, respectively. Density of states spectra and valence charge distribution maps suggest a mix of covalent and ionic characters of the chemical bonds. 2D materials at hand exhibit good absorption property in the visible regime with coefficient value reaching the order of 105/cm, even much larger in the ultraviolet, suggesting the promising optoelectronic applicability. Finally, the thermoelectric parameters including electrical conductivity, thermal conductivity, Seebeck coefficient, power factor and figure of merit are determined and analyzed. Results indicate prospective thermoelectric performance of both considered single layers as demonstrated by large figure of merit close to unity. Our work introduces two new 2D multifuntional materials that may possess potential applications in the optoelectronic and thermoelectric nano-devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    4
    Citations
    NaN
    KQI
    []