Tetrandrine attenuates the bone erosion in collagen-induced arthritis rats by inhibiting osteoclastogenesis via spleen tyrosine kinase

2018 
Tetrandrine, a bisbenzylisoquinoline alkaloid, was previously demonstrated to attenuate inflammation and cartilage destruction in the ankles of mice with collagen-induced arthritis (CIA). Here, we explored the underlying mechanism by which tetrandrine prevented arthritis-induced bone erosion by focusing on the differentiation and function of osteoclasts. We found that daily administration of tetrandrine (30 mg/kg) markedly reduced the bone damage and decreased the number of osteoclasts in CIA rats. In vitro, tetrandrine inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis at the early stage and reduced the expressions of osteoclast-related marker genes. In bone marrow-derived macrophages and RAW264.7 cells, tetrandrine inhibited RANKL-induced translocation of NF-κB-p65 and nuclear factor of activated T cell 1 (NFATc1) through suppressing spleen tyrosine kinase (Syk)-Bruton’s tyrosine kinase-PLCγ2-Ca2+ signaling. Of interest, tetrandrine did not affect the phosphorylation of immu...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    20
    Citations
    NaN
    KQI
    []