Tissue- and Region-Specific Accumulation of Arsenic Species, Especially in the Brain of Mice, After Long-term Arsenite Exposure in Drinking Water

2020 
Arsenic is identified as a known carcinogen and ubiquitously exists in nature. It appears that accumulation of inorganic arsenic (iAs) and its methylated metabolites in various tissues is closely correlated with the long-term toxicity and carcinogenicity of this metalloid. In this study, various arsenic species in murine tissues, especially in the cerebral cortex, cerebellum, and hippocampus, were determined after long-term exposure to 25, 50, 100, and 200 mg/L sodium arsenite in drinking water for 1 and 12 months. Our data showed that the amount of total arsenic (TAs) increased in an obvious dose-dependent manner in various tissues, and TAs levels were in the order of urinary bladder > brain > lung > liver > kidney > spleen. Furthermore, iAsIII and DMA could be observed in all tissues and brain regions with DMA being the predominant metabolite. The bladder, brain, and lung orderly contained the higher levels of DMA, while the liver, kidney, and spleen accumulated the higher proportion of iAsIII. MMA was preferentially accumulated in the lung and bladder of mice regardless of arsenic exposure doses or duration. What’s more, amazingly higher levels of MMA were observed in the hippocampus, which was distinguished from the cerebral cortex and cerebellum. Together with these results, our study clearly demonstrates that the accumulation of iAs and its methylated metabolites is tissue-specific and even not homogeneous among different brain regions in mice by long-term exposure to arsenite. Our study thus provides crucial information for recognizing arsenical neurotoxicity, and reducing the uncertainty in the risk assessment for this toxic metalloid.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    7
    Citations
    NaN
    KQI
    []