Multimodal imaging probe for targeting cancer cells using uMUC-1 aptamer

2015 
Abstract For adequate cancer therapy, newer imaging modalities with more specific ligands for unique targets are crucial. Underglycosylated mucin-1 (uMUC-1) antigen is an early marker of tumor development and is widely overexpressed on most tumors. A combination of nanotechnology with optical, radionuclide, and magnetic resonance (MR) imaging has great potential to improve cancer diagnosis and therapy. In this study, a multimodal nanoparticle imaging system was developed that can be used for optical, MR and positron emission tomography (PET) imaging. Cobalt ferrite magnetic nanoparticles surrounded by fluorescent rhodamine (designated MF) within a silica shell matrix were conjugated with an aptamer targeting uMUC-1 (designated MF-uMUC-1) and further labeled by 68 Ga (designated MFR-uMUC-1) with the help of a p -SCN-bn-NOTA chelating agent, resulting in single multimodal nanoparticles. The resultant nanoparticles are spherical and monodispersed, as revealed by transmission electron microscopy. The MFR-uMUC-1 nanoparticle showed specific and dose-dependent fluorescent, radioisotope and MR signals targeting BT-20 cells expressing uMUC-1. In vivo targeting and multimodal imaging in tumor-bearing nude mice also showed great specificity for targeting cancers with MFR-uMUC-1. The MFR-uMUC-1 probe could be used as a single multimodal probe to visualize cancer cells by means of optical, radionuclide and MR imaging.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    16
    Citations
    NaN
    KQI
    []