Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality

2017 
A favorable effect of an inhibitor of the sodium–glucose cotransporter 2 (SGLT2i) on mortality of diabetic patients was recently reported, although mechanisms underlying that effect remained unclear. Here, we examine SGLT2i effects on survival of diabetic mice and assess factors underlying these outcomes. To examine SGLT2i treatment effects in a model of severe diabetes, we fed genetically diabetic db/db mice a high-fat diet and then assessed outcomes including diabetic complications between SGLT2i TA-1887-treated and control mice. We also compare effects of SGLT2i TA-1887 with those of lowering blood glucose levels via insulin treatment. Untreated db/db mice showed remarkable weight loss, or cachexia, while TA-1887-treated mice did not but rather continued to gain weight at later time points and decreased mortality. TA-1887 treatment prevented pancreatic beta cell death, enhanced preservation of beta cell mass and endogenous insulin secretion, and increased insulin sensitivity. Moreover, TA-1887 treatment attenuated inflammation, oxidative stress, and cellular senescence, especially in visceral white adipose tissue, and antagonized endothelial dysfunction. Insulin treatment of db/db mice also prevented weight loss and antagonized inflammation and oxidative stress. However, insulin treatment had less potent effects on survival and prevention of cellular senescence and endothelial dysfunction than did TA-1887 treatment. SGLT2i treatment prevents diabetic cachexia and death by preserving function of beta cells and insulin target organs and attenuating complications. SGLT2i treatment may be a promising therapeutic strategy for type 2 diabetes patients with morbid obesity and severe insulin resistance. Sodium-glucose cotransporter 2 inhibitor (SGLT2i) has a favorable effect on mortality of diabetic subjects, but the mechanism stays unclear. Taichi Sugizaki at Kumamoto University examined SGLT2i effects in severe diabetic obese mice, and discovered that they showed prolonged survival without pathological weight loss, or cachexia. As with SGLT2i, Insulin also prevented cachexia, improved pancreatic beta cell function, insulin sensitivity and some organ damages. However, what makes SGLT2i important was to suppress cellular aging or vessel inflammation, while insulin accelerated those developments, which may lead to a result that SGLT2i has contributed to prolonged survival more than insulin. SGLT2i demonstrates an association with survival period upon maintaining good condition of pancreatic beta cells and insulin target organs, providing insight into strategies for treatment of severe diabetes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    23
    Citations
    NaN
    KQI
    []