The factors influencing sludge incineration residue (SIR)-based magnesium potassium phosphate cement and the solidification/stabilization characteristics and mechanisms of heavy metals

2020 
Abstract Magnesium potassium phosphate cement (MKPC) is prepared from MgO and KH2PO4 through an acid-base reaction and has been widely used in the rapid repairs of building structures and the solidification/stabilization (S/S) of heavy metals (HMs). The use of sludge incineration residue (SIR) rich in phosphorus resources to prepare SIR-based MKPC can achieve the reclamation of SIR and efficient HM S/S. Herein, based on the exploration of the optimal MKPC magnesia/phosphate ratio (M/P), the effects of SIR and HMs on the performance of the matrix and its interaction mechanism were comprehensively investigated. The results indicated that the compressive strength of the SIR-based MKPC increased first and then decreased with the gradual increase of SIR incorporation; the optimal was reached at 40.31 MPa when the SIR incorporation was 5 wt.%. The peak signal and crystal lattice of Pb2(PO4)3 indicated that there is a mixed effect between HMs (in SIR) and KH2PO4. The Visual MINTEQ analysis results also indicated that HMs are precipitated as HM phosphates. The formation of HM phosphates not only increases the M/P (with 30 wt.% SIR, M/P increased by 0.019), affecting the microstructure and changing the compressive strength of the matrix, but also promotes the transformation of HMs from the bioavailable to the more stable residual forms. The residual forms of the six HMs were all above 84% after S/S. Therefore, the SIR-based MKPC preparation significantly immobilized the HMs; particularly, the leaching toxicities of Cu (96.6%) and Zn (96.3%) were alleviated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    4
    Citations
    NaN
    KQI
    []