Fast raypath separation based on low-rank matrix approximation in a shallow-water waveguide

2018 
Subspace algorithms based on higher-order cumulants were developed to achieve high-resolution separation in non-Gaussian processes. However, singular value decomposition (SVD) of a huge matrix is an unavoidable step of these algorithms. The memory space and running time required by the decomposition are super-linear with respect to the size of the matrix, which is prohibitive in terms of practical applications. Thus, in this paper, a fast raypath separation algorithm based on low-rank matrix approximation is proposed in a shallow-water waveguide. The experimental results illustrate that the proposed algorithm dramatically reduces the consumption of time and space, with arbitrarily small error, compared to conventional higher-order cumulant-based algorithms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []