EEG-based discrimination of different cognitive workload levels from mental arithmetic

2018 
Cognitive workload, which is the level of mental effort required for a cognitive task, can be assessed by monitoring the changes in neurophysiological measures such as electroencephalogram (EEG). This study investigates the performance of an EEG-based Brain-Computer Interface (BCI) to discriminate different difficulty levels in performing a mental arithmetic task. EEG data from 10 subjects were collected while performing mental addition with 3 difficulty levels (easy, medium and hard). EEG features were then extracted using band power and Common Spatial Pattern features and subsequently features were selected using Fisher Ratio to train a Linear Discriminant Classifier. The results from 10-fold cross-validation yielded averaged accuracy of 90% for 2 classes (easy versus hard tasks) and 66% for 3 classes (easy versus medium versus hard tasks). Hence the results showed the feasibility of using EEG-based BCI to measure cognitive workload in performing mental arithmetic.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    8
    Citations
    NaN
    KQI
    []