Kagome metal-organic frameworks as a platform for strongly correlated electrons
2020
By using first-principles calculations we put forward the Cu-dicyanoanthracene lattice as a platform to investigate strong electronic correlations in the family of Kagome metal-organic frameworks. We show that the low-energy model is composed by molecular orbitals which arrange themselves in a typical Kagome lattice at n = 2/3 filling, where the Fermi level lies at the Dirac point. The Coulomb interaction matrix expressed in this molecular orbitals basis, as obtained by large-scale constrained random-phase approximation calculations, is characterized by local U and non-local U' parameters exceeding more than ten times the Kagome bandwidth. For such Kagome systems, our findings suggest the possible emergence of peculiar electron-electron collective phenomena, such as an exotic valence bond solid order characterized by modulated bond strengths.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
45
References
4
Citations
NaN
KQI