Threaded-Field-Lines Model for the Low Solar Corona Powered by the Alfven Wave Turbulence

2021 
We present an updated global model of the solar corona, including the transition region. We simulate the realistic tree-dimensional (3D) magnetic field using the data from the photospheric magnetic field measurements and assume the magnetohydrodynamic (MHD) Alfven wave turbulence and its non-linear dissipation to be the only source for heating the coronal plasma and driving the solar wind. In closed field regions the dissipation efficiency in a balanced turbulence is enhanced. In the coronal holes we account for a reflection of the outward propagating waves, which is accompanied by generation of weaker counter-propagating waves. The non-linear cascade rate degrades in strongly imbalanced turbulence, thus resulting in colder coronal holes. The distinctive feature of the presented model is the description of the low corona as almost-steady-state low-beta plasma motion and heat flux transfer along the magnetic field lines. We trace the magnetic field lines through each grid point of the lower boundary of the global corona model, chosen at some heliocentric distance, $R=R_{b}\sim1.1\ R_\odot$ well above the transition region. One can readily solve the plasma parameters along the magnetic field line from 1D equations for the plasma motion and heat transport together with the Alfven wave propagation, which adequately describe physics within the heliocentric distances range, $R_{\odot}
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    7
    Citations
    NaN
    KQI
    []