Interpretation of microbiota-based diagnostics by explaining individual classifier decisions

2017 
Background The human microbiota is associated with various disease states and holds a great promise for non-invasive diagnostics. However, microbiota data is challenging for traditional diagnostic approaches: It is high-dimensional, sparse and comprises of high inter-personal variation. State of the art machine learning tools are therefore needed to achieve this goal. While these tools have the ability to learn from complex data and interpret patterns therein that cannot be identified by humans, they often operate as black boxes, offering no insight into their decision-making process. In most cases, it is difficult to represent the learning of a classifier in a comprehensible way, which makes them prone to be mistrusted, or even misused, in a clinical environment. In this study, we aim to elucidate microbiota-based classifier decisions in a biologically meaningful context to allow their interpretation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    12
    Citations
    NaN
    KQI
    []