Controlled reaction for improved CH3NH3PbI3 transition in perovskite solar cells

2015 
Hybrid halide perovskites represent one of the most promising solutions toward the fabrication of all solid nanostructured solar cells, with improved efficiency and long-term stability. This article aims at investigating the properties of CH3NH3PbI3 with controlled loading time in CH3NH3I solution via a two-step sequential deposition and correlating them with their photovoltaic performances. It is found that the optimum PCE of the loading time in the CH3NH3I solution is possible only at a relatively short time (10 min). Prolonging the loading time will degrade the perovskite film, and deteriorate the device performance by introducing a large amount of excessive defects and recombination. However, even if the material band gap remains substantially unchanged, a suitable loading time can dramatically improve the charge transport within the perovskite layer, exhibiting the out-standing performances of meso-superstructured solar cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    10
    Citations
    NaN
    KQI
    []