Disentangling the effects of clustering and multi-exciton emission in second-order photon correlation experiments
2013
In single particle spectroscopy, the degree of observed fluorescence anti-bunching in a second-order cross correlation experiment is indicative of its bi-exciton quantum yield and whether or not a particle is well isolated. Advances in quantum dot synthesis have produced single particles with bi-exciton quantum yields approaching unity. Consequently, this creates uncertainty as to whether a particle has a high bi-exciton quantum yield or if it exists as a cluster. We report on a time-gated anti-bunching technique capable of determining the relative contributions of both multi-exciton emission and clustering effects. In this way, we can now unambiguously determine if a particle is single. Additionally, this time-gated anti-bunching approach provides an accurate way for the determination of bi-exciton lifetime with minimal contribution from higher order multi-exciton states.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
33
References
66
Citations
NaN
KQI