Transcriptional and functional analysis of trifluoromethionine resistance in Entamoeba histolytica

2012 
Methods: The expression profiles of 9230 genes in wild-type and trifluoromethionine-resistant strains were compared. Episomal overexpression of EhBspA1 was performed to verify its role in trifluoromethionine resistance. The transcriptomes of a trifluoromethionine-resistant strain cultured with or without trifluoromethionine, an EhMGL gene-silenced strain, a strain with reduced susceptibility to metronidazole and a wild-type strain under cysteine-deprived conditions were compared to determine the specificity of the changes observed in the trifluoromethionine-resistant strain. Results: The expression of 35 genes differed at least 3-fold between trifluoromethionine-resistant and wildtype strains. Some of the genes play roles in metabolism, the stress response and gene regulation. EhMGL and EhBspA1 were found to be highly downregulated and upregulated, respectively. Overexpression of EhBspA1 conferred partial resistance to trifluoromethionine. Comparative transcriptome analysis showed that genes modulated in trifluoromethionine-resistant strains were specific. Conclusions: E. histolytica has few known resistance mechanisms against drugs. In this study, we showed that aside from EhMGL downregulation, induction of EhBspA1 plays a role in trifluoromethionine resistance. We also showed a unique set of induced genes that could represent the signature profile of trifluoromethionine resistance in E. histolytica.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    17
    Citations
    NaN
    KQI
    []