Drive mechanisms to the inner and outer hair cell stereocilia

2018 
It has been long believed that inner hair cell (IHC) stimulation can be gleaned from the classic ter-Kuile shear motion between the reticular lamina (RL) and tectorial membrane (TM). The present study explores this and other IHC stimulation mechanisms using a finite-element-model representation of an organ of Corti (OoC) cross section with fluid-structure interaction. A 3-D model of a cross section of the OoC including soft tissue and the fluid in the sub-tectorial space, tunnel of Corti and above the TM was formulated based on anatomical measurements from the gerbil apical turn. The outer hair cells (OHCs), Deiter’s cells and their phalangeal processes are represented as Y-shaped building-block elements. Each of the IHC and OHC bundles is represented by a single sterocilium. Linearized Navier-Stokes equations coupled with linear-elastic equations discretized with tetrahedral elements are solved in the frequency domain. We evaluated the dynamic changes in the OoC motion including sub-tectorial gap dimensions for 0.1 to 10 kHz input frequencies. Calculations show the classic ter-Kuile motion but more importantly they show that the gap-height changes which produce oscillatory radial flow in the subtectorial space. Phase changes in the stereocilia across OHC rows and the IHC are also observed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    1
    Citations
    NaN
    KQI
    []