On the relationships between Z-, C-, and H-local unitaries.

2019 
Quantum walk algorithms can speed up search of physical regions of space in both the discrete-time [arXiv:quant-ph/0402107] and continuous-time setting [arXiv:quant-ph/0306054], where the physical region of space being searched is modeled as a connected graph. In such a model, Aaronson and Ambainis [arXiv:quant-ph/0303041] provide three different criteria for a unitary matrix to act locally with respect to a graph, called $Z$-local, $C$-local, and $H$-local unitaries, and left the open question of relating these three locality criteria. Using a correspondence between continuous- and discrete-time quantum walks by Childs [arXiv:0810.0312], we provide a way to approximate $N\times N$ $H$-local unitaries with error $\delta$ using $O(1/\sqrt{\delta},\sqrt{N})$ $C$-local unitaries, where the comma denotes the maximum of the two terms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []