Hierarchical bimetallic hydroxides/chalcogenides core-sheath nanoarrays for freestanding ultrahigh rate supercapacitors

2019 
Transition metal compounds (TMCs) either crystalline or amorphous exhibit specific advantages in electrochemical energy storage. To integrate their merits into one electrode, we have herein developed hierarchical bimetallic hydroxides/chalcogenides core-sheath nanoarrays on nickel foam (NF) for freestanding high-efficiency supercapacitors, wherein interior crystalline metal chalcogenides serve as highly conductive pivots and exterior amorphous bimetallic hydroxides provide rich ion diffusion channels. With the synergic effect of unique structure and bimetallic composition, the as-prepared NiCo(OH)4/NiSe-Ni3S2/NF electrode displays an ultrahigh areal specific capacitance of 19.0 F cm−2 at 15 mA cm−2, which can be retained as 6.0 F cm−2 even at 125 mA cm−2. To the best of our knowledge, such excellent tolerance of ultrafast ions insertion/extraction at high current density is rare among NF-based free-standing electrodes. The asymmetric supercapacitor by assembling with activated carbon as negative electrode delivers a volumetric capacitance of 3.93 F cm−3 at 30 mA cm−2, corresponding to an energy density of 13.9 mWh cm−3 at a power density of 200 mW cm−3. A capacitance retention of 82.5% was observed after 4000 cycles, together with an average 97% coulombic efficiency. This work may provide a facile strategy to construct hierarchical nanoarrays for efficient energy storage devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    8
    Citations
    NaN
    KQI
    []