Cavity-assisted quantum computing in a silicon nanostructure

2014 
We present a scheme of quantum computing with charge qubits corresponding to one excess electron shared between dangling-bond pairs of surface silicon atoms that couple to a microwave stripline resonator on a chip. By choosing a certain evolution time, we propose the realization of a set of universal single- and two-qubit logical gates. Due to its intrinsic stability and scalability, the silicon dangling-bond charge qubit can be regarded as one of the most promising candidates for quantum computation. Compared to the previous schemes on quantum computing with silicon bulk systems, our scheme shows such advantages as a long coherent time and direct control and readout.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []