The interactive roles of zinc and calcium in mitochondrial dysfunction and neurodegeneration

2014 
Zinc has been implicated in neurodegeneration following ischemia. In analogy to calcium, zinc has been proposed to induce toxicity via mitochondrial dysfunction, but the relative role of each cation in mitochondrial damage is unclear. Here we report that under conditions mimicking ischemia in hippocampal neurons — normal (2 mM) calcium plus elevated (>100 μM) exogenous zinc — mitochondrial dysfunction evoked by glutamate, kainate or direct depolarization is, despite significant zinc uptake, primarily governed by calcium. Thus, robust mitochondrial ion accumulation, swelling, depolarization and ROS generation were only observed after toxic stimulation in calcium-containing media. This contrasts with the lack of any mitochondrial response in zinc-containing but calcium-free medium, even though zinc uptake and toxicity were strong under these conditions. Indeed, abnormally high, ionophore-induced zinc uptake was necessary to elicit any mitochondrial depolarization. In calcium- and zinc-containing media, depolarization-induced zinc uptake facilitated cell death and enhanced accumulation of mitochondrial calcium, which localized to characteristic matrix precipitates. Some of these contained detectable amounts of zinc. Together these data indicate that zinc uptake is generally insufficient to trigger mitochondrial dysfunction, so that mechanism(s) of zinc toxicity must be different from that of calcium.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    26
    Citations
    NaN
    KQI
    []