R1 dispersion contrast at high field with fast field-cycling MRI.

2018 
Contrast agents with a strong $R_1$ dispersion have been shown to be effective in generating target-specific contrast in MRI. The utilization of this $R_1$ field dependence requires the adaptation of a MRI scanner for fast field-cycling (FFC). Here, we present the first implementation and validation of FFC-MRI at a clinical field strength of 3 T. A field-cycling range of $\pm$100 mT around the nominal $B_0$ field was realized by inserting an additional insert coil into an otherwise conventional MRI system. System validation was successfully performed with selected iron oxide magnetic nanoparticles and comparison to FFC-NMR relaxometry measurements. Furthermore, we show proof-of-principle $R_1$ dispersion imaging and demonstrate the capability of generating R1 dispersion contrast at high field with suppressed background signal. With the presented ready-to-use hardware setup it is possible to investigate MRI contrast agents with a strong R1 dispersion at a field strength of 3 T.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []