Image Segmentation for Dust Detection Using Semi-supervised Machine Learning

2020 
Dust plumes originating from the Earth’s major arid and semi-arid areas can significantly affect the climate system and human health. Many existing methods have been developed to identify dust from non-dust pixels from a remote sensing point of view. However, these methods use empirical rules and therefore have difficulty detecting dust above or below the detectable thresholds. Supervised machine learning methods have also been applied to detect dust from satellite imagery, but these methods are limited especially when applying to areas outside the training data due to the inadequate amount of ground truth data. In this work, we proposed an automatic dust segmentation framework using semi-supervised machine learning, based on a collocated dataset using Visible Infrared Imaging Radiometer Suite (VIIRS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The proposed method utilizes unsupervised machine learning for segmentation of VIIRS imagery, and leverages the guidance from the dust labels using the dust profile product of CALIPSO to determine the dust clusters as the final product. The dust clusters are determined based on the similarity of spectral signature from dust pixels along the CALIPSO tracks. Experiment results show that the accuracy of the proposed framework outperforms the traditional physical infrared method along CALIPSO tracks. In addition, the proposed method performs consistently over three different study areas, the North Atlantic Ocean, East Asia, and Northern Africa.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []