Effective property evaluation and analysis of three-dimensional periodic lattices and composites through Bloch-wave homogenization

2019 
Periodic lattices offer enhanced mechanical and dynamic properties per unit mass, and the ability to engineer the material response by optimizing the unit cell. Characterizing the effective properties of these lattice materials through experiments can be a time consuming and costly process, so analytical and numerical methods are crucial. Specifically, the Bloch-wave homogenization approach allows one to characterize the effective static properties of the lattice while simultaneously analyzing wave propagation properties such as band gaps, propagating modes, and wave directionality. While this analysis has been used for some time, a thorough study of this approach on three-dimensional (3D) lattice materials with different symmetries and geometries is presented here. Bloch-wave homogenization is applied to extract the effective stiffness tensor of 3D periodic lattices and confirmed with elastostatic homogenization, both within a finite element framework. Multiple periodic lattices with cubic, transversely ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    6
    Citations
    NaN
    KQI
    []