Modeling and Simulation of Rectangular Sheet Membrane Using Computational Fluid Dynamics (CFD)

2021 
The study demonstrates the modeling and simulation of the flow phenomena inside the rectangular sheet-shaped membrane module using Computational fluid dynamics (CFD) based solver. The module was implemented to enhance the quality of effluent generated from the Rubber Industry. Commercially available CFD software (ANSYS) implemented to mimic the flow inside the porous membrane. The meshing of the developed model was done using Gambit software. The grid independency study reports a grid size of 375000 was the best grid for the simulation procedure. To mimic the flow pattern inside the membrane, the second-order laminar model was considered. The accuracy of the simulation process is evaluated using error analysis. In the error analysis, methods like percent bias, Nash-Sutcliffe, and the ratio of RMSE-observation standard deviation are selected for error analysis. The assessed estimations of PBIAS, NSE, and RSR are close to ideal value, justifying the adequacy of the simulation. From model validation, it demonstrates that CFD predicted values follow the experimental values with high precision.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []