Juvenile hormone and juvenile hormone esterase in adult females of the mosquito Aedes aegypti

1986 
Abstract Juvenile hormone III levels and juvenile hormone esterase activity were measured in whole body extracts and haemolymph, respectively, of female Aedes aegypti . The amount of juvenile hormone, determined by coupled gas chromatography-mass spectrometry, rose over the first 2 days after emergence from 0.7 to 7.5 ng/g, and then slowly fell over the next 5 days in females not given a blood meal. In females fed blood, juvenile hormone levels fell during the first 3 h to 2.3 ng/g. The rate of decline then slowed so that levels had reached their lowest point (0.4 ng/g) by 24 h after the blood meal. By 48 h, levels started to rise again until 96 h when they were equivalent to pre-blood meal levels. Juvenile hormone esterase activity in the haemolymph of females was measured with a partition assay. The esterase activity showed small fluctuations in unfed animals. In females fed blood on the 3rd day after emergence, the juvenile hormone esterase activity rose slowly to a peak at 36 h. At 42 h it began to decline, and by 66 h it had returned to pre-blood meal levels. Thus, juvenile hormone levels and juvenile hormone esterase activity were inversely correlated after a blood meal. Both the ovary and fat body produce juvenile hormone esterase in organ culture. Juvenile hormone III acid was the only metabolite produced after incubation of haemolymph with racemic-labelled juvenile hormone III. Juvenile hormone acid, diol, and acid diol were the main metabolic products seen in whole animal extracts after topical application of labelled hormone. About 25% of topically applied, labelled juvenile hormone appears in the haemolymph as the acid diol, and 50% of this is excreted in the urine immediately after the blood meal. Topical application of BEPAT ( S -benzyl- O -ethyl phosphoramidothiolate), a specific inhibitor of juvenile hormone esterase, resulted in the absence of juvenile hormone acid and a reduction in the acid diol. Both BEPAT and methoprene, a juvenile hormone analogue, caused a reduction in egg hatch when applied topically 30 h after a blood meal, demonstrating that the decline in juvenile hormone levels after a blood meal is necessary for normal egg development and suggesting that the decline is mediated, at least in part, by juvenile hormone esterase.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    120
    Citations
    NaN
    KQI
    []