The Role of Lecithin and Solvent Addition in Ethylcellulose-Stabilized Heat Resistant Chocolate

2015 
Large deformation mechanical testing and Fourier-transform infrared spectroscopy were used to gain further insights into the mechanism of heat resistance in ethylcellulose- (EC) stabilized chocolate prepared using the solvent substitution method. Here we show that the presence of lecithin at the surface of sucrose reduced heat resistance by impeding interactions between EC and sucrose. These techniques along with fluorescence microscopy also showed that the EtOH used in solvent substitution chocolate was able to remove the EtOH soluble lecithin phospholipids from the surface of the sucrose. Removal of the lecithin and the slight solubility of sucrose in EtOH both have positive impacts on heat resistance. It was also found that EtOH may reduce heat resistance by destabilizing the casein micelle in samples made with skim milk powder. Finally, results have indicated that EC is likely able to interact with the lactose in skim milk powder and the starch in cocoa powder leading to greater heat resistance. These findings will be useful in developing the ideal heat resistant chocolate formula.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    11
    Citations
    NaN
    KQI
    []