Updated definitions on piezophily as suggested by hydrostatic pressure dependence on temperature

2020 
Microbial preference for elevated hydrostatic pressure (HP) is a recognized key feature of environmental and industrial processes. HP effects on macromolecules and, consequently, cell functionality has been accurately described in the last decades. While there is little debate about the importance of HP in shaping microbial life, a systematic definition of microbial preference for increased HP is missing. The lack of a consensus about 9true9 piezophiles, and 9low9 or 9high9 HP levels, has deleterious repercussions on microbiology and biotechnology. As certain levels are considered 9low9 they are not applied to assess microbial activity. Most microorganisms collected in deep waters or sediments have not been tested (nor isolated) using the corresponding HP at which they were captured. Microbial response to HP is notoriously dependent on other environmental parameters, most notably temperature, but also on availability of nutrients, growth substrate, pH and salinity. This implies that countless isolates retrieved from ambient pressure conditions may very well require increased HP to grow optimally, as already demonstrated in both Archaea and Bacteria. In the present study, I collected the data from described piezophilic isolates and used the fundamental correlation existing between HP and temperature, as first suggested in seminal works by Yayanos, to update the definition of piezophiles. Thanks to the numerous new piezophilic isolates available since such seminal studies, the present analysis brings forward updated definitions which concern 1) the actual beginning of the piezosphere, the area in the deep sea where piezophiles thrive; 2) the HP thresholds which should be considered low, medium and high HP, and their implications for experimental design in Microbiology; and 3) the nature of obligate piezophiles and their location in the deep sea.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    1
    Citations
    NaN
    KQI
    []