A Decade's Review of miRNA: a Center of Transcriptional Regulation of Drug-Metabolizing Enzymes and Transporters Under Hypoxia.

2021 
BACKGROUND Hypoxia has a negative effect on the cardiovascular system, nervous system, and metabolism, which contributes to potential changes in drug absorption, distribution, metabolism, and excretion (ADME). However, hypoxia can also alter the expression of microRNA (miRNA), thereby regulating drug-metabolizing enzymes, transporters, and ADME genes, such as hypoxia-inducible factor, inflammatory cytokine, nuclear receptor, etc. Therefore, it is crucial to study the role of miRNA in the regulation of drug-metabolizing enzymes and transporters under hypoxia. METHODS A systematic review of published studies was carried out to investigate the role of miRNA in the regulation of drug-metabolizing enzymes and transporters under hypoxia. Data and information on expression changes in miRNA, drug-metabolizing enzymes, and transporters under hypoxia were analyzed and summarized. RESULTS Hypoxia can up- or down-regulate the expression of miRNA. The effect of hypoxia on Cytochrome P450 (CYP450) is still a subject of debate. The widespread belief is that hypoxia decreased the activity and expression of CYP1A1, CYP1A2, CYP2E1, and CYP3A1 and increased those of CYP3A6 and CYP2D1 in rats. Hypoxia increased the expression of a multidrug resistance-associated protein, breast cancer resistance protein, peptide transporter, organic cation transporter, and organic anion transporter. miRNA negatively regulated the expression of drug-metabolizing enzymes and transporters. CONCLUSION The findings of this review indicated that miRNA plays a key role in the expression changes of drug-metabolizing enzymes and transporters under hypoxia.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []