Trace-metal contamination in proton exchange membrane fuel cells caused by laser-cutting stains on carbon-coated metallic bipolar plates

2020 
Abstract Trace-metal contamination poses a threat to performance and stability of proton exchange membrane fuel cells (PEMFCs). In this study the source of origin and degree of metal dissolution from carbon-coated 316L bipolar plates (BPPs) are evaluated after a long-term PEMFC test run under conditions resembling a real-life automotive application. Despite intact carbon-coating, metal dissolution occurs from uncoated oxycarbide stains on the plates’ surface. Which correlates with post-mortem detection of chromium, iron and nickel in the membrane electrode assembly. The rate of cell voltage decrease throughout the high current operations is found to be twice as high in the presence of metal ions. Metal dissolution can be correlated with transients in cell voltage during dynamic current load cycling as a result of temporary global fuel starvation. The observed difference in metal dissolution on the anode and cathode BPP indicates weak galvanic coupling between the bipolar plate(s) and the electrode layer(s).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    1
    Citations
    NaN
    KQI
    []