Analyzing Design Parameters of Nano-Magnetic Technology Based Converter Circuit.

2019 
Digital circuits need improvement in computation speed, reducing circuit complexity and power consumption. Emerging Technology NML can be such an architecture at nano-scale and thus emerges as a viable alternative for the digital CMOS VLSI. This technology has the capability to compute the logic as well as storage into the same device, which points out that it great potential for emerging technology. Since Nano-magnetic, technology fast approaches its minimal feature size, high device density and operate at room temperature. NML based circuits synthesis has to opt for novel half subtraction and Binary-to-Gray architecture for achieving minimal complexity and high-speed performance. This manuscript pro-poses area efficient binary half-subtraction and Binary-to-Gray converter architecture. Circuits’ synthesize are performed by MagCAD tool and simulate by Modelsim simulator. The circuit’s performance are estimated over other existing designs. The proposed converter consume 73.73%, and 94.49% less area than the converter designed using QCA and CMOS technique respectively. This is a significant contribution to this paper. Simulation results of converter show that the critical path delay falls within 0.15 µs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    2
    Citations
    NaN
    KQI
    []