Improvement in the heating efficiency of fast ignition inertial confinement fusion through suppression of the preformed plasma

2017 
The study of fast electron spectrum optimization by suppression of preformed plasma in fast ignition targets is presented in this work. Integrated fast-electron spectra for electron energies below 3 MeV—the energy range responsible for core heating—are compared for different preformed plasma conditions. The pulse contrast (the ratio of peak-to-pedestal laser intensities) is compared for 108, 109 and 1011 conditions at constant laser energy (~500 J), pulse duration (2 ps), spot size (30% encircled energy on 50 µm diameter) and laser intensity (around 1 × 1019 W cm−2). The best electron spectrum optimization, consisting of maximized electron number for energies below 3 MeV was obtained with 14 µm thick cone targets. The energy coupling efficiency from heating laser to core plasma, assuming typical core plasma parameters, was estimated to be 2%, although 0.37% was obtained with previous conditions with poor pulse contrast and a 7 µm thick cone target.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    1
    Citations
    NaN
    KQI
    []